首页 | 本学科首页   官方微博 | 高级检索  
     

基于LVQ神经网络的变压器故障诊断方法
引用本文:许建光,赵峰. 基于LVQ神经网络的变压器故障诊断方法[J]. 电气开关, 2012, 50(1): 30-32,36
作者姓名:许建光  赵峰
作者单位:1. 江苏阜宁金宁三环富士电气有限公司,江苏 阜宁,224400
2. 兰州交通大学,甘肃 兰州,730070
摘    要:结合模糊理论,提出一种基于学习向量量化器(LVQ)的变压器故障诊断方法。它首先在无监督学习模式下,采用数据压缩技术,完成输入空间上的向量重构。接着结合监督学习机制,从输入数据选择特征赋予每个类。该方法是一种将自组织映射(SOM)和监督学习模式结合起来的自适应模式分类技术,具有结构简单,适应性强和分类精度高的特点。变压器故障诊断实例显示了该方法的有效性。

关 键 词:学习向量量化(LVQ)  向量重构  数据压缩  故障诊断

Fault Diagnosis Methods of the Transformer Based on LVQ Neural Network
XU Jian-guang , ZHAO Feng. Fault Diagnosis Methods of the Transformer Based on LVQ Neural Network[J]. Electric Switchgear, 2012, 50(1): 30-32,36
Authors:XU Jian-guang    ZHAO Feng
Affiliation:1.Funing Jinning Sanhuan Fushi Electrical Apparatus Co.,Ltd.,Funing 224400,China;2.Lanzhou Jiaotong University,Lanzhou 730070,China)
Abstract:Combined with fuzzy theory,a novel transformer faults diagnosis method is proposed based on learning vector quantization(LVQ) in this paper.Firstly,under non supervised learning pattern,the method applies data compression technique to accomplish vector reconstruction in input interspace.Then,combined with supervised learning mechanism,it selects the characteristics from the input data to each classification.Obviously,the method is an adaptive pattern classification technique incorporating self-organizing map(SOM) with supervised learning pattern,and owns simple structure,strong adaptability and high classification precision.A practical example in transformer fault diagnosis indicates the availability of the method.
Keywords:LVQ  vector reconstruction  data compression  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号