首页 | 本学科首页   官方微博 | 高级检索  
     

基于模式聚类和遗传算法的文本特征提取方法
引用本文:郝占刚,王正欧. 基于模式聚类和遗传算法的文本特征提取方法[J]. 计算机应用, 2005, 25(7): 1632-1633. DOI: 10.3724/SP.J.1087.2005.01632
作者姓名:郝占刚  王正欧
作者单位:天津大学,系统工程研究所,天津,300072;天津大学,系统工程研究所,天津,300072
基金项目:国家自然科学基金资助项目(60275020)
摘    要:采用模式聚类和遗传算法进行文本特征提取,并用Kohonen网络进行分类。模式聚类可以有效降低文本特征的维数,使得特征从几千维降为几百维。但几百维的维数对Kohonen网络来说仍然太高,因此采用遗传算法在此基础上继续降维。实验结果表明,这两种方法结合可以极大地降低文本的维数,并能提高分类准确率。

关 键 词:特征提取  模式聚类  遗传算法  Kohonen网络
文章编号:1001-9081(2005)07-1632-02
收稿时间:2004-12-21

Text feature selection method based on pattern clustering and genetic algorithm
HAO Zhan-gang,WANG Zheng-ou. Text feature selection method based on pattern clustering and genetic algorithm[J]. Journal of Computer Applications, 2005, 25(7): 1632-1633. DOI: 10.3724/SP.J.1087.2005.01632
Authors:HAO Zhan-gang  WANG Zheng-ou
Affiliation:Institute of Systems Engineering, Tianjin University
Abstract:The features of text were selected by pattern clustering and GA(Genetic Algorithm) and were classified by Kohonen network. The dimensions of text could be reduced greatly by using pattern clustering from thousands to hundreds, then reduced to tens by using GA. The experiment results indicate that combining these two methods can greatly reduce the dimension of text and improve the precision of text classification.
Keywords:feature selection  pattern clustering  genetic algorithm  Kohonen network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号