首页 | 本学科首页   官方微博 | 高级检索  
     


Topology optimization of sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems
Authors:Gao  Ruxin  Zhang  Yahui  Kennedy  David
Affiliation:1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, People’s Republic of China
;2.School of Engineering, Cardiff University, Cardiff, CF24 3AA, Wales, UK
;
Abstract:

Due to the significant difference of dynamic properties between the fluid medium and the structure, when a vibro-acoustic system is subjected to a higher frequency excitation, it may typically exhibit mid-frequency behavior which involves different wavelength deformations and is very sensitive to the uncertainties of the system. This paper deals with optimized distribution of a sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems by using hybrid boundary element analysis and statistical energy analysis. Based on the solid isotropic material with penalization approach, an artificial sound absorbing material model is suggested and the relative densities of the sound absorbing material are taken as design variables. The sound pressure level at a specified point in the acoustic cavity is to be minimized by distributing a given amount of sound absorbing material. An efficient direct differentiation scheme for the response sensitivity analysis is proposed. Then, the optimization problem is solved by using the method of moving asymptotes. A numerical example illustrates the validity and effectiveness of the present optimization model. Impact of the excitation frequency on optimized topology is also discussed.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号