首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic microrheometer for in situ characterization of coating viscosity
Authors:Song Jin-Oh  Henry Robert M  Jacobs Ryan M  Francis Lorraine F
Affiliation:Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA.
Abstract:A magnetic microrheometer has been designed to characterize the local viscosity of liquid-applied coatings in situ during solidification. The apparatus includes NdFeB magnets mounted on computer-controlled micropositioners for the manipulation of ~1?μm diameter superparamagnetic particles in the coating. Magnetic field gradients at 20-70 T/m are generated by changing magnet size and the gap distance between the magnets. A specimen stage located between two magnets is outfitted with a heater and channels to control process conditions (temperature and air flow), and a digital optical microscope lens above the stage is used to monitor the probe particle position. Validation studies with glycerol and polyimide precursor solution showed that microrheometry results match traditional bulk rheometry within an error of 5%. The viscosities of polyvinyl alcohol (PVA) solution and polyimide precursor solution coatings were measured at different shear rates (0.01-5?s(-1)) by adjusting the magnetic field gradient. The effect of proximity to the substrate on the particle motion was characterized and compared with theoretical predictions. The magnetic microrheometer was used to characterize the time-viscosity profile of PVA coatings during drying at several temperatures. The viscosity range measured by the apparatus was 0.1-20?Pa?s during drying of coatings at temperatures between room temperature and 80?°C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号