首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进差分进化的K-均值聚类算法
引用本文:高平,毛力,宋益春. 基于改进差分进化的K-均值聚类算法[J]. 数字社区&智能家居, 2013, 0(8): 5064-5067
作者姓名:高平  毛力  宋益春
作者单位:[1]无锡信捷电气股份有限公司,江苏无锡214072 [2]轻工过程先进控制教育部重点实验室,江南大学物联网工程学院,江苏无锡214122
基金项目:轻工过程先进控制教育部重点实验室开放课题资助(江南大学)项目(APCLI1004)
摘    要:针对K-均值算法对初始值敏感和易陷入局部最优的缺点,提出了一种基于改进差分进化的K-均值聚类算法。该算法通过引入基于Laplace分布的变异算子和Logistic变尺度混沌搜索来增强全局寻优能力。实验结果表明,该算法能够较好地克服传统K-均值算法的缺点,具有较好的搜索能力,且算法的收敛速度较快,鲁棒性较强。

关 键 词:聚类分析  差分进化  K-均值聚类算法  Laplace分布  Logistic混沌搜索

A K-means Clustering Algorithm Based on Enhanced Differential Evolution
GAO Ping,MAO Li,SONG Yi-chun. A K-means Clustering Algorithm Based on Enhanced Differential Evolution[J]. Digital Community & Smart Home, 2013, 0(8): 5064-5067
Authors:GAO Ping  MAO Li  SONG Yi-chun
Affiliation:1 Xinje Electronic Co., Ltd. , Wuxi 214000, China; 2 .Key Laboratory of Advanced Process Control for Light Industry (Minis- try of Education), School of Internet of Things, Jiangnan University, Wuxi 214122, China)
Abstract:The conventional k-means algorithms are sensitive to the initial cluster centers, and tend to be trapped by local opti- ma. To resolve these problems, a novel k-means clustering algorithm using enhanced differential evolution technique is proposed in this paper. This algorithm improves the global search ability by applying Laplace mutation operator and variable-scale Logistic chaotic searching. Numerical experiments show that this algorithm overcomes the disadvantages of the conventional k-means al- gorithms, and improves search ability with higher accuracy, faster convergence speed and better robustness.
Keywords:cluster analysis  differential evolution  k-means cluster algorithm  Laplace distribution  Logistic chaotic searching
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号