首页 | 本学科首页   官方微博 | 高级检索  
     

多阶灰色支持向量机集成预测模型研究
引用本文:周华平,李敬兆. 多阶灰色支持向量机集成预测模型研究[J]. 计算机工程与科学, 2015, 37(3): 539-546
作者姓名:周华平  李敬兆
作者单位:安徽理工大学计算机科学与工程学院,安徽淮南,232001
基金项目:国家自然科学基金资助项目(51174257);国家973计划资助项目(2010CB732002);安徽理工大学中青年骨干教师
摘    要:对灰色预测模型GM(1,1)和支持向量机SVM预测模型进行分析,提出了多阶灰色支持向量机集成预测模型Dm_GM(1,1)-SVM。通过多阶缓冲算子改进灰色预测模型的预测精度,对最终预测值的各个相关指标进行预测;同时,采用粒子群优化算法对支持向量机模型进行径向基核参数和惩罚参数寻优,得到最佳参数对(c,g),从而确定支持向量机的最佳回归模型;最后将各指标预测值作为支持向量机模型的输入,依据预测模型和预测模型的输入值求得预测结果。实验实例表明,多阶灰色支持向量机集成模型和传统的预测模型相比,在本例中预测精度更高,说明多阶灰色预测模型和支持向量机模型相结合在解决实际预测问题中具有实用价值。

关 键 词:多阶灰色预测模型  支持向量机  集成预测  缓冲算子  粒子群优化算法
收稿时间:2013-09-25
修稿时间:2014-01-02

An integrated prediction model using multi-stage gray model and support vector machine
ZHOU Hua-ping , LI Jing-zhao. An integrated prediction model using multi-stage gray model and support vector machine[J]. Computer Engineering & Science, 2015, 37(3): 539-546
Authors:ZHOU Hua-ping    LI Jing-zhao
Affiliation:(Faculty of Computer Science & Engineering,Anhui University of Science and Technology,Huainan 232001,China)
Abstract:A multi-stage gray support vector machine ensemble prediction model (Dm_GM(1,1) SVM) is presented by analyzing the gray model GM (1,1) and the support vector machine model (SVM).The prediction accuracy of gray model is improved through multi stage buffer operators to predict various relevant indicators.Meanwhile, the particle swarm optimization algorithm is used to find the optimal parameters of the support vector machine model, which include RBF kernel parameters and penalty parameters and the optimal pair is (c, g).Thus,the optimal support vector machine regression model is determined. Finally the final output value is predicted by inputting the predictive value of each indicator to support the vector machine model.The results show that Dm_GM (1,1) SVM has a higher prediction accuracy compared with the gray prediction model and the BP neural network prediction model in this case,and that multi-stage gray forecasting model combined with support vector machine model has a practical value in solving practical prediction problems.
Keywords:multi-stage gray prediction model  support vector machine  integrated forecasting  buffer operator  particle swarm optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号