首页 | 本学科首页   官方微博 | 高级检索  
     


Noncovalently functionalized multiwalled carbon nanotubes by chitosan-grafted reduced graphene oxide and their synergistic reinforcing effects in chitosan films
Authors:Pan Yongzheng  Bao Hongqian  Li Lin
Affiliation:School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
Abstract:Water-soluble chitosan-grafted reduced graphene oxide (CS-rGO) sheets are successfully synthesized via amidation reaction and chemical reduction. CS-rGO possesses not only remarkable graphitic property but also favorable water solubility, which is found to be able to effectively disperse multiwalled carbon nanotubes (MWCNTs) in acidic solutions via noncovalent interaction. The efficiency of CS-rGO in dispersing MWCNTs is tested to be higher than that of plain graphene oxide (GO) and a commercial surfactant, sodium dodecyl sulfate (SDS). With incorporation of 1 wt % CS-rGO dispersed MWCNTs (CS-rGO-MWCNTs), the tensile modulus, strength and toughness of the chitosan (CS) nanocomposites can be increased by 49, 114, and 193%, respectively. The reinforcing and toughening effects of CS-rGO-MWCNTs are much more prominent than those of single-component fillers, such as MWCNTs, GO, and CS-rGO. Noncovalent π-π interactions between graphene sheets and nanotubes and hydrogen bonds between grafted CS and the CS matrix are responsible for generating effective load transfer between CS-rGO-MWCNTs and the CS matrix, causing the simultaneously increased strength and toughness of the nanocomposites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号