首页 | 本学科首页   官方微博 | 高级检索  
     


Poly(ether sulfone) supported hybrid poly(vinyl alcohol)–maleic acid–silicone dioxide membranes for the pervaporation separation of ethanol–water mixtures
Authors:Yuping Wu  Zongli Xie  Derrick Ng  Shirley Shen  Zhonghua Zhou
Affiliation:1. CSIRO Manufacturing, Clayton, Victoria, Australia;2. College of Materials, Xiamen University, Xiamen, Fujian, China
Abstract:Microporous poly(ether sulfone) (PES) supported hybrid polymer–inorganic membranes were prepared by the crosslinking of poly(vinyl alcohol) (PVA), maleic acid (MA), and SiO2 via an aqueous sol–gel route and a solution‐casting method. The membrane performance was tested for the pervaporation separation of ethanol–water mixtures from 20 to 60 °C with a feed ethanol concentration of 96 wt %. The membrane characterization results reveal that different SiO2 loadings affected the crystallinity and roughness of the membranes. The PVA–MA–SiO2 membrane containing 10 wt % SiO2 showed that SiO2 nanoparticles were well dispersed within the polymer matrix; this resulted in significant enhancements in both the flux and selectivity. The membrane achieved a high water permeability of 1202 g·μm·m?2 h?1 kPa?1 and a selectivity of 1027 for the separation of a 96 wt % ethanol‐containing aqueous solution. This enhanced membrane performance might have been due to the dense crosslinking membrane network, increased free volume, and uniform distribution of SiO2 nanoparticles. Both the water and ethanol fluxes increased with the feed water concentration and temperature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44839.
Keywords:composites  membranes  separation techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号