首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanically enhanced electrically conductive films from polymerization of 3,4‐ethylenedioxythiophene with wood microfibers
Authors:Islam Hafez  Han‐Seung Yang  William Tai Yin Tze
Affiliation:Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota
Abstract:This study was aimed at enhancing the mechanical properties of poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) using wood microfibers. Ultra fine friction grinding was conducted on wood particles to reduce their size to the micron scale and to induce fibrillation. Oxidative polymerization was performed on 3,4‐ethylenedioxythiophene (EDOT) monomer at seven dosages based on the content of microfibers in the formulation. The presence of PEDOT:PSS in the prepared films was verified by infrared spectroscopy and scanning electron microscopy. The composite films became stronger and stiffer as the fiber content increased. An EDOT:microfibers ratio of 33 wt % was considered the best among the seven tested levels, judging from their low sheet resistivity (340 Ω/sq.) and favorable tensile properties (38 MPa strength and 4.8 GPa stiffness). The selected films were also tested for their resistance to solvents to obtain information about their potential use in different environments. Among the tested solvents, sodium hydroxide greatly decreased the film conductivity. It also had the harshest effect on reducing the weight of the film. Findings from this study demonstrate the successful use of wood microfibers alternative to synthetic substrates and cellulose nanofiber as a supportive and reinforcing material for electrically conductive polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45127.
Keywords:cellulose and other wood products  conducting polymers  fibers  films  mechanical properties  solvent resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号