首页 | 本学科首页   官方微博 | 高级检索  
     


The toughening behavior of PLLA and its asymmetric PLLA/PDLA blends with lower optical purity
Authors:Yanmei Guo  Jun Shao  Haoqing Hou
Affiliation:College of Chemistry and Chemical Engineering, JiangXi Normal University, Nanchang, China
Abstract:Linear poly(d ‐lactide) (PDLA) with various molecular weights is synthesized and incorporated into commercial poly(l ‐lactide) (PLLA) with different optical purities. And then, the crystallization, mechanical and thermal properties of the PLLA and PLLA/PDLA cast films are investigated. In the PLLA and PDLA/PLLA specimens with lower optical purity, few homochiral crystallites (HC) form in all the specimens and only a small amount of PLA stereocomplex crystallites (SC) are observed in the blends. The elongation at break of all the specimens is extraordinary high, >300%. Dynamic mechanical analyses indicate that the destruction temperature increases at first, and then depresses as enlarging the molecular weight of PDLA in these blends. For the PLLA and PLLA/PDLA with higher optical purity, more content of HC develops in neat PLLA, and both SC and HC produce in the PLLA/PDLA specimens. However, the strains of neat specimens and binary blends are much lower than that of specimens with lower optical purity. The specimens with higher optical purity exhibit higher destruction temperatures and lower loss factors. The high content of crystals (SC and HC) would act as the physical cross‐linking points and provide a key factor to impede the deformation of neat PLLA and binary blends during stretching, which should result in the fragile behavior of the PLLA and PLLA/PDLA blends with higher optical purity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44730.
Keywords:poly(D‐lactide)  poly(L‐lactide)  poly(lactide) stereocomplex  toughening
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号