首页 | 本学科首页   官方微博 | 高级检索  
     


Intermetallic compound layer formation between copper and hot-dipped 100In, 50In-50Sn, 100Sn,and 63Sn-37Pb coatings
Authors:Paul T. Vianco  Paul F. Hlava  Alice C. Kilgo
Affiliation:(1) Center for Solder Science and Technology, Sandia National Laboratories, 87185 Albuquerque, NM
Abstract:The growth kinetics of intermetallic compound layers formed between four hot-dipped solder coatings and copper by solid state, thermal aging were examined. The solders were l00Sn, 50In-50Sn, 100In, and 63Sn-37Pb (wt.%); the substrate material was oxygen-free, high conductivity Cu. The total intermetallic layer of the 100Sn/Cu system exhibited a combination of parabolic growth at lower aging temperatures and t0.42 growth at the higher temperatures. The combined apparent activation energy was 66 kJ/mol. These results are compared to the total layer growth observed with the 63Sn-37Pb/Cu system which showed parabolic kinetics at similar temperatures and an apparent activation energy of 45 kJ/mol. Both 100Sn and 63Sn-37Pb diffusion couples showed a composite intermetallic layer comprised of Cu3Sn and Cu6Sn5. The intermetallic compound layer formed between In and Cu changed from a CuIn2 stoichiometry at short annealing times to a Cu57In43 composition at longer periods. The growth kinetics were parabolic with an apparent activation energy of 20 kJ/mol. The intermetallic layer growth of the 50In-50Sn/Cu system exhibited extreme variations in the layer thicknesses which prohibited a quantitative assessment of the growth kinetics. The layer was comprised of two compounds: Cu26Sn13In8 which was the dominant phase and a thin layer of Cu17Sn9In24 adjacent to the solder.
Keywords:Growth kinetics  intermetallic compounds  solder
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号