首页 | 本学科首页   官方微博 | 高级检索  
     


Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol
Authors:Sarvesh Kumar Srivastava  Ryosuke Yamada  Chiaki Ogino  Akihiko Kondo
Affiliation:1.Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, 657-8501, Nada, Kobe, Japan;2.Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, 657-8501, Nada, Kobe, Japan
Abstract:Room-temperature extracellular biosynthesis of gold nanoparticles (Au NPs) was achieved using Escherichia coli K12 cells without the addition of growth media, pH adjustments or inclusion of electron donors/stabilizing agents. The resulting nanoparticles were analysed by ultraviolet–visible (UV–vis) spectrophotometry, atomic force microscopy, transmission electron microscopy and X-ray diffraction. Highly dispersed gold nanoplates were achieved in the order of around 50 nm. Further, the underlying mechanism was found to be controlled by certain extracellular membrane-bound proteins, which was confirmed by Fourier transformation-infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis. We observed that certain membrane-bound peptides are responsible for reduction and subsequent stabilization of Au NPs (confirmed by zeta potential analysis). Upon de-activation of these proteins, no nanoparticle formation was observed. Also, we prepared a novel biocatalyst with Au NPs attached to the membrane-bound fraction of E. coli K12 cells serving as an efficient heterogeneous catalyst in complete reduction of 4-nitrophenol in the presence of NaBH4 which was studied with UV–vis spectroscopy. This is the first report on bacterial membrane-Au NP nanobiocomposite serving as an efficient heterogeneous catalyst in complete reduction of nitroaromatic pollutant in water.
Keywords:Gold nanoparticles   Extracellular biosynthesis   Green catalysis   Escherichia coli   Nitrophenol degradation   Water treatment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号