首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature and concentration dependence of ammonium migration in bentonite-clay mixtures: A case study in Hanoi,Vietnam
Affiliation:1. VNU Key Laboratory of Geo-environment and Climate Change Response, University of Science, Vietnam National University, Hanoi, Viet Nam;2. Faculty of Advanced Science and Technology, Kumamoto University, Japan;3. Vietnam Japan University, Vietnam National University, Hanoi, Viet Nam
Abstract:Groundwater in southern Hanoi, Vietnam has been recently detected to possess high concentration of ammonium ion (NH4+). Otherwise, one of the abundant sources of NH4+ comes from municipal solid waste landfills. Bentonite-clay mixtures (BCMs) widely utilized as landfill bottom barriers in various countries, but limited in Vietnam should perform well to isolate NH4+ from groundwater. This study is to evaluate combined effects of temperature and initial ammonium concentration on adsorption, diffusion, and permeability through mixtures of indigenous clay with 0 %, 5 %, 10 %, 15 % bentonite. The results indicated more effective NH4+ adsorption capacity for low initial concentration than high initial concentration in all temperatures (20, 35, and 50 °C). The temperature dependency showed an increase in adsorption coefficient from 20 °C to 35 °C and a decrease in the range of 35 °C and 50 °C. Whereas diffusion coefficient and hydraulic conductivity for all cases keep increasing gradually in both temperature ranges. The reasonable mass of bentonite content of 15 % should be added into local clay for landfill bottom liners in such conditions of elevated temperature at 50 °C and interaction of ammonium solution 1000 mg/L. The micro-structures via SEM images of these materials provided the proofs of both improvement of hydraulic barrier properties for indigenous clay owing to bentonite presence and NH4+ effects on their micro-structures.
Keywords:Temperature  Ammonium  Non-linear adsorption  Diffusion  Hydraulic conductivity  Bentonite-clay mixtures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号