首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of fatigue damage and fracture in semi-crystalline polymers
Authors:PE Bretz  RW Hertzberg  JA Manson
Affiliation:Materials Research Center, Lehigh University, Bethlehem, PA 18015, USA
Abstract:Fatigue crack profiles and fracture surfaces of poly(vinylidene fluoride) (PVDF), nylon-6,6 (N66), and poly(acetal) (PA) were studied to ascertain the mechanisms of cyclic damage and fatigue crack propagation in semicrystalline polymers. Crack tip damage is believed to begin as small trans-spherulitic and inter-spherulitic tensile crazes. However, compressive yielding within the reverse plastic zone at the crack tip crushes and elongates the spherulites in the direction of crack growth. Consequently, the microstructure of the polymer in advance of the crack front is different from the original morphology of the spherulitic bulk material as evidenced by the resulting fracture surface appearance. When the test temperature is below the glass transition temperature, however, plastic deformation is limited, and fatigue fracture occurs before significant disruption of the spherulitic structure. In this case, the fracture surface morphology reflects the original microstructure of the bulk polymer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号