首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of progressive glomerular injury in membranous nephropathy
Authors:A Squarer  KV Lemley  S Ambalavanan  B Kristal  WM Deen  R Sibley  L Anderson  BD Myers
Affiliation:Division of Nephrology, Stanford University School of Medicine, California 94305, USA.
Abstract:Glomerular function and structure were serially evaluated in 15 patients with membranous nephropathy who exhibited relapsing nephrosis and chronic depression of GFR. GFR declined from 56+/-8 (mean+/-SEM) at onset to 31+/-4 ml/min per 1.73 m2 after a 2- to 5-yr period of observation (P < 0.05). An analysis of filtration dynamics suggested persistent elevation of net ultrafiltration pressure. To examine a possible role for declining intrinsic glomerular filtration capacity as the basis for the observed hypofiltration, glomeruli in the baseline and a repeat biopsy (performed after a median of 28 mo) were subjected to morphometric analysis and mathematical modeling. Analysis of the baseline biopsy revealed a reduction in filtration slit frequency and thickening of the glomerular basement membrane, lowering computed hydraulic permeability by 66% compared with normal kidney donors. In contrast, filtration surface area was increased by 37% as a result of glomerular hypertrophy. The repeat biopsy revealed persistent depression of hydraulic permeability, primarily owing to foot process broadening. An additional finding was a decrease in filtration surface area from baseline in patent glomeruli, possibly due to encroachment on the capillary lumen of an increasingly widened basement membrane. Also, a striking increase in the prevalence of global glomerulosclerosis from 7+/-2% to 23+/-4% was found between the two biopsies, suggesting a significant loss of functioning nephrons. It is concluded that hypofiltration in membranous nephropathy is the consequence of a biphasic loss of glomerular ultrafiltration capacity, initially owing to impaired hydraulic permeability that is later exacerbated by a superimposed loss of functioning glomeruli and of filtration surface area.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号