首页 | 本学科首页   官方微博 | 高级检索  
     

结合MCA与Retinex算法的低照度图像增强方法
摘    要:针对低照度条件下获取的图像存在可见光照度低、噪声大等问题,提出了一种基于形态成分分析(MCA)和Retinex算法结合的低照度图像增强方法。首先,将低照度图像转换到HSV色彩空间,接着采用MCA将V分量分解为纹理和平滑部分;其次对平滑部分采用基于改进的多尺度Retinex算法和自适应全局色调映射进行增强,对纹理部分进行维纳滤波去噪后再进行Laplace算子锐化;然后MCA重建得到亮度增强图像,将其与H、S分量合并且转换到RGB色彩空间;最后采用自适应函数恢复色彩得到最终增强图像。实验结果表明,该算法能够有效改善低照度图像质量,提高图像亮度,更好地保留边缘、细节纹理和抑制噪声。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号