首页 | 本学科首页   官方微博 | 高级检索  
     

光储充一体化快充站日前运行策略
引用本文:吴凡,周云,冯冬涵,史一炜,李恒杰,雷珽. 光储充一体化快充站日前运行策略[J]. 电测与仪表, 2021, 58(12): 104-109. DOI: 10.19753/j.issn1001-1390.2021.12.015
作者姓名:吴凡  周云  冯冬涵  史一炜  李恒杰  雷珽
作者单位:上海交通大学电力传输与功率变换控制教育部重点实验室,上海200240;上海交通大学电力传输与功率变换控制教育部重点实验室,上海200240;兰州理工大学电气工程与信息工程学院,兰州730050;国网上海市电力公司营销部,上海200122
基金项目:上海市青年科技英才扬帆计划(19YF1423800);国网上海市电力公司科技项目(SGSH0000YXJS1900181)
摘    要:针对电动汽车光储充一体化快充站的优化运行提出一种日前运行策略.考虑光伏出力与快充负荷的不确定性,应用基于场景的随机优化方法,以期望运行成本最低为目标,在满足储能系统循环寿命损耗限制的条件下,制定下一日的交换功率参考值.快充负荷场景利用序贯蒙特卡洛模拟方法基于非齐次泊松过程假设生成.利用分段线性化的储能循环寿命损耗计算模型,对与放电深度相关的储能寿命损耗进行精细化建模.通过算例验证了文中策略在应用储能系统响应电价信号进行削峰填谷方面的有效性.

关 键 词:光储充一体化快充站  储能系统寿命损耗  快充负荷  随机规划
收稿时间:2019-11-27
修稿时间:2019-11-28

Day-ahead scheduling of fast charging station with battery energy storage system and PV
Wu Fan,Zhou Yun,Feng Donghan,Shi Yiwei,Li Hengjie and Lei Ting. Day-ahead scheduling of fast charging station with battery energy storage system and PV[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 104-109. DOI: 10.19753/j.issn1001-1390.2021.12.015
Authors:Wu Fan  Zhou Yun  Feng Donghan  Shi Yiwei  Li Hengjie  Lei Ting
Affiliation:Key Laboratory of Control of Power Transmission and Conversion SJTU,Ministry of Education,#$NLShanghai,Key Laboratory of Control of Power Transmission and Conversion SJTU,Ministry of Education,#$NLShanghai,Key Laboratory of Control of Power Transmission and Conversion SJTU,Ministry of Education,#$NLShanghai,Key Laboratory of Control of Power Transmission and Conversion SJTU,Ministry of Education,#$NLShanghai,Key Laboratory of Control of Power Transmission and Conversion SJTU,Ministry of Education,#$NLShanghai,Marketing Department,State Grid Shanghai Municipal Electric Power Company
Abstract:A day-ahead scheduling strategy is proposed for a fast charging station with battery energy storage and PV. Considering the uncertainty of PV output and fast charging demand, a scenario-based stochastic optimization method is applied to minimize the expected operation cost by determining the reference value of power exchange with the grid in the next day under limited battery life loss. The sequential Monte Carlo simulation method is used to generate fast charging demand scenarios under the assumption of non-homogeneous Poisson process. A piecewise linear calculation model of battery energy storage life loss is used to quantify the battery life loss related to the depth of discharge. The case study verifies the effectiveness of the proposed strategy in peak shaving according to electricity price signals by using energy storage systems.
Keywords:fast charging station with battery energy storage system and PV   life loss of battery   fast charging demand   stochastic optimization
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号