首页 | 本学科首页   官方微博 | 高级检索  
     

基于SDAE和双模型联合训练的低压用户窃电检测方法
引用本文:招景明,唐捷,潘峰,杨雨瑶,林楷东,马键. 基于SDAE和双模型联合训练的低压用户窃电检测方法[J]. 电测与仪表, 2021, 58(12): 161-168. DOI: 10.19753/j.issn1001-1390.2021.12.024
作者姓名:招景明  唐捷  潘峰  杨雨瑶  林楷东  马键
作者单位:广东电网有限责任公司计量中心,广州510080;广东电网有限责任公司,广州510699;华南理工大学电力学院智慧能源工程技术研究中心,广州510640
基金项目:国家自然科学基金资助项目(51777077)
摘    要:用户窃电行为是电网企业运营管理的痛点,基于数据驱动的低压用户窃电检测是当前的重要发展方向.由于窃电数据集具有自身高维度且样本不平衡的特点,对窃电检测模型的拟合能力和泛化能力要求极高.为此,文章利用堆栈降噪自编码器对低压用户日用电量数据进行特征提取,通过挖掘数据的深层特征减少窃电产生的极端数据对检测模型的影响;进而提出逻辑回归与深度神经网络联合训练模型进行低压用户窃电检测,将逻辑回归模型的记忆能力与深度神经网络模型的泛化能力相结合,进一步提升窃电检测的精度.通过实际电网数据的实验仿真,从AUC值、准确率和召回值三个评价指标验证了所提出方法相对于传统机器学习算法具有明显的性能优势.

关 键 词:窃电检测  自编码器  逻辑回归  深度神经网络  联合训练
收稿时间:2021-07-07
修稿时间:2021-08-02

Detection Method of Electricity Theft for Low-voltage Users based on SDAE and joint Training
Zhao Jingming,Tang Jie,Pan Feng,Yang Yuyao,Lin Kaidong and Ma Jian. Detection Method of Electricity Theft for Low-voltage Users based on SDAE and joint Training[J]. Electrical Measurement & Instrumentation, 2021, 58(12): 161-168. DOI: 10.19753/j.issn1001-1390.2021.12.024
Authors:Zhao Jingming  Tang Jie  Pan Feng  Yang Yuyao  Lin Kaidong  Ma Jian
Affiliation:Metrology Center of Guangdong Power Grid Co,Ltd,Guangdong Power Grid Corp, Guangzhou,Metrology Center of Guangdong Power Grid Co,Ltd,Metrology Center of Guangdong Power Grid Co,Ltd,Research Center of Smart Energy Technology,School of Electric Power,South China University of Technology,Metrology Center of Guangdong Power Grid Co,Ltd
Abstract:In the low-voltage distribution network, the practices of electricity theft have been continuously causing economic losses to power grid enterprises, while the development of smart grids provides a reliable data basis for the detection of electricity theft for the data-driven low-voltage users. Due to the characteristics of high dimension and unbalanced sample in the data set of electricity theft, the fitting and generalization abilities of the detection model are highly required. On this basis, a method of detecting electricity theft by low-voltage users is proposed, which firstly uses the Stacked Denoising Auto Encoder (SDAE) to perform data mining, and then uses the Wide and Deep Model with high fitting and generalization abilities to detect electricity theft. Through the experimental simulation of actual power grid data, evaluation indicators of AUC value, accuracy rate, and recall value verify that the proposed method has obvious performance advantages over the traditional machine learning algorithm .
Keywords:electricity  theft detection, Auto  Encoder, LR, DNN, joint  training
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号