首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-state dimension and real arithmetic
Affiliation:Department of Computer Science, Iowa State University, Ames, IA 50011, USA
Abstract:We use entropy rates and Schur concavity to prove that, for every integer k  2, every nonzero rational number q, and every real number α, the base-k expansions of α, q + α, and all have the same finite-state dimension and the same finite-state strong dimension. This extends, and gives a new proof of, Wall’s 1949 theorem stating that the sum or product of a nonzero rational number and a Borel normal number is always Borel normal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号