首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems
Authors:Zdravko Terze  Joris Naudet
Affiliation:(1) Department of Mechanical Engineering, Fukuoka University, Fukuoka, Japan;(2) Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart, Germany
Abstract:The generalized coordinates partitioning is a well-known procedure that can be applied in the framework of a numerical integration of the DAE systems. However, although the procedure proves to be a very useful tool, it is known that an optimization algorithm for the coordinates partitioning is needed to obtain the best performance. In the paper, the optimized partitioning of the generalized coordinates is revisited in the context of a numerical forward dynamics of the holonomic and non-holonomic multibody systems. After a short presentation of the geometric background of the optimized coordinates partitioning, a structure of the optimally partitioned vectors is discussed on the basis of a gradient analysis of the separate constraint sub-manifolds at the configuration and the velocity levels when holonomic and non-holonomic constraints are present in the system. It is shown that, for holonomic systems, the vectors of optimally partitioned coordinates have the same structure for the generalized positions and velocities. On the contrary, in the case of non-holonomic systems, the optimally partitioned coordinates generally differ at the configuration and the velocity levels. The conclusions of the paper are illustrated within the framework of the presented numerical example.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号