首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gentle Adaboost算法的牛体检测
引用本文:高韬,李凤民杨耀权. 基于Gentle Adaboost算法的牛体检测[J]. 计算机应用研究, 2016, 33(11)
作者姓名:高韬  李凤民杨耀权
作者单位:华北电力大学 自动化系,知识工程和发现研究所,奥克兰理工大学,奥克兰 新西兰,;华北电力大学 自动化系;华北电力大学 自动化系
摘    要:目前将模式识别、机器视觉、图像处理等先进的计算机技术应用于农业信息化领域已成为当前精准养殖业的研究热点。由此提出了一种基于Gentle Adaboost算法的牛体检测的方法。首先利用Bag of Features (BOF)的思想创建特征词典,然后通过词典对目标进行特征提取,最后通过Gentle Adaboost算法对对训练集的BOF特征向量进行训练分类,获得对象和场景的分类模型。实验表明训练的检测器可精确实时的进行牛体检测。

关 键 词:牛体检测   BOF   特征向量   Gentle Adaboost
收稿时间:2015-10-08
修稿时间:2016-09-12

Gentle Adaboost Based Cow Detection
Tao Gao and lifengmin. Gentle Adaboost Based Cow Detection[J]. Application Research of Computers, 2016, 33(11)
Authors:Tao Gao and lifengmin
Affiliation:Department of Automation,North China Electric Power University,AUT
Abstract:At present, researches focus on the precision livestock farming which is combined with the advanced computer technology, such as pattern recognition, machine vision, image processing for the field of agricultural information. This paper presents a method for the detection of cow based on Gentle Adaboost algorithm. Firstly, feature dictionary is created by the improved BOF. Then the cow target is extracted by the dictionary. Finally, by training and classifying for the feature vector of the training set, the classification model of object and scene can be obtained. Experiments show that the detector can detect cow in real-time accurately.
Keywords:Cow Detection   BOF   feature vector   Gentle Adaboost
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号