首页 | 本学科首页   官方微博 | 高级检索  
     


Novel optimization method of single square FSS impinged and cascaded radar absorbing composites
Authors:Ravi Panwar  Dae-Sung Son
Affiliation:1. Indian Institute of Information Technology, Design &2. Manufacturing, Jabalpur, Madhya Pradesh, India;3. Opto-Electro-Structural Lab, Korea Advanced Institute of Science &4. Technology (KAIST), Daejeon, South Korea
Abstract:It is well known that radar absorbing potentiality of existing magneto-dielectric composites can be significantly enhanced by the application of frequency selective surface (FSS) and cascaded electromagnetic (EM) structures. But the optimization of such complex EM structures and validation of the adopted optimization strategy is still a very challenging task for the researchers. Therefore, in this study, an effective effort has been made for the optimization and the corresponding validation for Single Square FSS (SS-FSS) impinged and cascaded radar wave absorbers using advanced computational EM software’s like FEldberechnung fur Korper mit beliebiger Oberflache – a German acronym (FEKO) and high frequency structure simulator (HFSS). In addition, a critical analysis of dielectric constant (ε′) has been carried out to select the best combination of composites for the development of efficient radar wave absorbers. A comparison between optimized and simulated results have been carried out to examine the effect of advanced EM approaches over reflection loss (RL) characteristics of composite radar absorbing materials (CRAMs). A rapid change in radar absorption properties of composites has been observed after the application of SSFSS and cascading. A SS-FSS impinged composite has been found to provide a wide absorption bandwidth of 3.6 GHz at X-band. A cascaded absorber having layer thickness 1.8 mm provides a peak RL of ?42.6 dB at 10.6 GHz with an absorption bandwidth of 2.5 GHz. The strong agreement between mathematical model, HFSS and FEKO results clearly reflects the efficiency of adopted approach for distinct practical EM applications.
Keywords:Radar wave absorber  composite  stealth  frequency selective surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号