Abstract: | In Part I of this paper we calculated depth profiles and polarization characteristics of airborne lidar return signals by the Monte Carlo method. Here we calculate the polarization characteristics of lidar return signals for different types of water. We demonstrate the feasibility of polarization lidar application to the detection of underwater inhomogeneities of different origins. It is shown that simultaneous analysis of depth profiles of the lidar return signal power and signal depolarization ratio substantially increases the information content of airborne lidar sensing of seawater. We compare calculated results with the data of airborne lidar measurements for lambda = 0.53 mum. |