首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Interfacial Lattice Mismatching on Wetting of Ni-Plated Steel by Magnesium
Authors:Ali M Nasiri  Mok Y Lee  David C Weckman  Y Zhou
Affiliation:1.Centre for Advanced Materials Joining,University of Waterloo,Waterloo,Canada;2.System Solution Research Center,Research Institute of Industrial Science & Technology,Pohang,Korea;3.Department of Mechanical & Mechatronics Engineering, Centre for Advanced Materials Joining,University of Waterloo,Waterloo,Canada
Abstract:In this study, wetting has been characterized by measuring the contact angles of AZ92 Mg alloy on Ni-electroplated steel as a function of temperature. Reactions between molten Mg and Ni led to a contact angle of about 86 deg in the temperature range of 891 K to 1023 K (618 °C to 750 °C) (denoted as Mode I) and a dramatic decrease to about 46 deg in the temperature range of 1097 K to 1293 K (824 °C to 1020 °C) (denoted as Mode II). Scanning and transmission electron microscopy (SEM and TEM) indicated that AlNi + Mg2Ni reaction products were produced between Mg and steel (Mg-AlNi-Mg2Ni-Ni-Fe) in Mode I, and just AlNi between Mg and steel (Mg-AlNi-Fe) in Mode II. From high resolution TEM analysis, the measured interplanar mismatches for different formed interfaces in Modes I and II were \( 17{\kern 1pt} {\text{pct}}_{{\{ 10\overline 11\}_{\text{Mg}} //\{ 110\}_{\text{AlNi}} }} \)-\( 104.3{\text{pct}}_{{\{ 110\}_{\text{AlNi}} //\left\{ {10\overline{1}0} \right\}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} }} \)-\( 114\,{\text{pct}}_{{\left\{ {0003} \right\}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} //\{ 111\}_{\text{Ni}} }} \) and \( 18\,{\text{pct}}_{{\{ 10\overline 11\}_{\text{Mg}} //\{ 110\}_{\text{AlNi}} }} \)-\( 5\,{\text{pct}}_{{\left\{ {110} \right\}_{\text{AlNi}} //\{ 110\}_{\text{Fe}} }} \), respectively. An edge-to-edge crystallographic model analysis confirmed that Mg2Ni produced larger lattice mismatching between interfaces with calculated minimum interplanar mismatches of \( 16.4\,{\text{pct}}_{{{\text{\{ 10}}\overline 1 1 {\text{\} }}_{\text{Mg}} / / {\text{\{ 110\} }}_{\text{AlNi}} }} \)-\( 108.3\,{\text{pct}}_{{{\text{\{ 110\} }}_{\text{AlNi}} / / {\text{\{ 10}}\overline 1 1 {\text{\} }}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} }} \)-\( 17.2\,{\text{pct}}_{{{\text{\{ 10}}\overline 1 1 {\text{\} }}_{{{\text{Mg}}_{ 2} {\text{Ni}}}} / / {\text{\{ 100\} }}_{\text{Ni}} }} \) for Mode I and \( 16.4\,{\text{pct}}_{{{\text{\{ 10}}\overline1 1 {\text{\} }}_{\text{Mg}} / / {\text{\{ 110\} }}_{\text{AlNi}} }} \)-\( 0.6\,{\text{pct}}_{{{\text{\{ 111\} }}_{\text{AlNi}} / / {\text{\{ 111\} }}_{\text{Fe}} }} \) for Mode II. Therefore, it is suggested that the poor wettability in Mode I was caused by the existence of Mg2Ni since AlNi was the immediate layer contacting molten Mg in both Modes I and II, and the presence of Mg2Ni increases the interfacial strain energy of the system. This study has clearly demonstrated that the lattice mismatching at the interfaces between reaction product(s) and substrate, which are not in direct contact with the liquid, can greatly influence the wetting of the liquid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号