首页 | 本学科首页   官方微博 | 高级检索  
     


Frequency error based identification of cracks in beam-like structures
Authors:Wenguang Liu  Mark E Barkey
Affiliation:1.School of Aeronautic Manufacturing Engineering,Nanchang Hangkong University,Nanchang, JX,China;2.Department of Aerospace Engineering and Mechanics,The University of Alabama,Tuscaloosa,USA
Abstract:A crack identification method of a single edge cracked beam-like structure by the use of a frequency error function is presented in this paper. First, the dynamic theory of Euler-Bernoulli beams was employed to derive the equation of the natural frequency for a single edge cracked cantilever beam-like structure. Subsequently, the cracked section of the beam was simulated by a torsional spring. The flexibility model of the torsional spring due to the crack was estimated by fracture mechanics and energy theory. Thereafter, a function model was proposed for crack identification by using the error between the measured natural frequencies and the predicted natural frequencies. In this manner, the crack depth and crack position can be determined when the total error reaches a minimum value. Finally, the accuracy of the natural frequency equation and the viabilty of the crack identification method were verified in the case studies by the measured natural frequencies from the literature. Results indicate that the first two predicted natural frequencies are in good agreement with the measured ones. However, the third predicted natural frequency is smaller than the measured natural frequency. In the case of small measured frequency errors, the predicted crack parameters are in good agreement with the measured crack parameters. However, in the case of large measured frequency errors, the predicted crack parameters only give roughly estimated results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号