首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of multi‐branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA
Authors:Lennard Torres  Colleen McMahan  Lucas Ramadan  Kevin M Holtman  Gustavo H D Tonoli  Allison Flynn  William J Orts
Affiliation:1. Lapol, LLC, Santa Barbara, California;2. ARS US Department of Agriculture, Bioproducts Research Unit, WRRC, Albany, California;3. Department of Forest Science (DCF), Universidade Federal De Lavras, Lavras, MG, Brazil
Abstract:Stereocomplex formation between poly(l ‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) in the melt state was investigated and altered via the addition of multi‐branched poly(d ‐lactide) (PDLA) additives. Two different multi‐branched PDLA additives, a 3‐arm and 4‐arm star‐shaped polymeric structure, were synthesized as potential heat resistance modifiers and incorporated into PLLA at 5, 10, and 20 (w/w) through melt blending. Mechanical and thermomechanical properties of these blends were compared with linear poly(l ‐lactide) (PLLA) as well as with blends formed by the addition of two linear PDLA analogs that had similar molecular weights to their branched counterparts. Blends with linear PDLA additives exhibited two distinct melting peaks at 170–180°C and 200–250°C which implied that two distinct crystalline domains were present, that of the homopolymer and that of the stereocomplex, the more stable crystalline structure formed by the co‐crystallization of both d ‐ and l ‐lactide enantiomers. In contrast, blends of PLLA with multi‐branched PDLA formed a single broad melting peak indicative of mainly formation of the stereocomplex, behavior which was confirmed by X‐ray diffraction (XRD) analysis. The heat deflection temperature determined by thermal mechanical analysis was improved for all blends compared to neat PLLA, with increases of up to180°C for 20% addition of the 3‐arm PLLA additive. Rheological properties of the blends, as characterized by complex viscosity (η*), remained stable over a wide temperature range. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42858.
Keywords:biopolymers and renewable polymers  biodegradable  blends  polylactic acid
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号