Tribological behaviors of carbon series additions reinforced CF/PTFE composites at high speed |
| |
Authors: | Pengpeng Ye Jian Wu Liwen Mu Dafang He Xin Feng Xiaohua Lu |
| |
Affiliation: | 1. State Key Laboratory of Materials‐Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China;2. Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, USA |
| |
Abstract: | The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti‐wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 ? 55%, 55 ? 60%, 40 ? 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43236. |
| |
Keywords: | applications composites friction graphene and fullerenes mechanical properties nanotubes wear and lubrication |
|
|