首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic mechanical properties,crystallization behaviors,and low‐temperature performance of polypropylene random copolymer composites
Authors:Xiaomeng Wang  Xiaogang Yin  Lijun Wang  Chun Zhang  Wei Gong  Li He
Affiliation:1. College of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China;2. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, Guizhou, China
Abstract:In this study, polypropylene random copolymer (PPR) composites were prepared by the addition of either three kinds of thermoplastic rubber (TPR) modifiers (types 2088A, 2095, and 2096) or an ethylene–octene copolymer (POE)/high‐density polyethylene (HDPE; 2 :1 w/w) blend. Differential scanning calorimetry, wide‐angle X‐ray diffraction, and dynamic mechanical analysis were used to characterize the crystallization behaviors and dynamic mechanical properties of the PPR composites. The results indicated that PPR/POE/HDPE and PPR/TPR2088A had better comprehensive mechanical properties, especially the low‐temperature toughness among all of the samples. The obtained PPR/POE/HDPE blends showed a high toughness and good stiffness in the temperature interval from ?10 to 23°C with the addition of only 10 wt % POE/HDPE. When the temperature continued to fall below ?10°C, the PPR/TPR2088A composites exhibited a better impact toughness without a loss of too much stiffness. The good low‐temperature toughness of those two composites was attributed to both the decrease in the crystallinity and the uniform dispersion, obvious interfacial adhesion, and cavitation ability of POE/HDPE and TPR2088A in the PPR matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42960.
Keywords:composites  copolymers  crystallization  mechanical properties  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号