首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线最小二乘支持向量机回归的电力系统暂态稳定预测
引用本文:吴琼杨以涵刘文颖. 基于在线最小二乘支持向量机回归的电力系统暂态稳定预测[J]. 中国电机工程学报, 2007, 27(25): 38-43
作者姓名:吴琼杨以涵刘文颖
作者单位:华北电力大学电力系统保护与动态安全监控教育部重点实验室 北京市昌平区102206
基金项目:甘肃省电力公司重点科技项目
摘    要:提出了一种基于在线最小二乘支持向量机回归的电力系统暂态稳定预测方法。分析了标准最小二乘支持向量机回归算法用于在线预测时存在的主要问题,然后根据分块矩阵求逆定理对标准算法进行改进,实现支持向量的递推式求解,提高了算法的学习效率。为了满足实际多机系统在线稳定预测的要求,引入轨迹聚合技术对多机轨迹进行聚合,进一步减少了计算量。在轨迹降阶的基础上,根据EEAC理论,通过识别聚合轨迹的动态鞍点来判断轨迹的稳定性。最后,以电科院7机系统和我国西北电网为例进行仿真分析,从预测精度和计算时间两方面验证了方法的有效性。

关 键 词:暂态稳定预测  电力系统  支持向量机  统计学习
文章编号:0258-8013(2007)25-0038-06
收稿时间:2007-05-23
修稿时间:2007-07-31

ELECTRIC POWER SYSTEM TRANSIENT STABILITY PREDICTION BASED ON ON-LINE LEAST SQUARES SUPPORT VECTOR MACHINE
WU Qiong,YANG Yi-han,LIU Wen-ying. ELECTRIC POWER SYSTEM TRANSIENT STABILITY PREDICTION BASED ON ON-LINE LEAST SQUARES SUPPORT VECTOR MACHINE[J]. Proceedings of the CSEE, 2007, 27(25): 38-43
Authors:WU Qiong  YANG Yi-han  LIU Wen-ying
Affiliation:Key Laboratory of Power System Protection and Dynamic Security Monitory and Control under Ministry of Education, North China Electric Power University, Changping District, Beijing 102206, China
Abstract:In prediction of the power system transient trajectory with least squares support vector machine (LS-SVM), repeatedly inverting matrix is the most important factor in calculation speed. According to the theorem of inverting block matrix, this paper modified the algorithm to save calculation time. In order to satisfy the requirement for on-line transient stability prediction of multi-machine system, the trajectories polymerization technology was used to reduce computing complexity. Based on extended equal area criterion (EEAC), transient stability was estimated by identifying the dynamic saddle point (DSP). According to the simulation results of 36-node system suggested by China Electric Power Research Institute (CEPRI) and China northwest power grid, the validity of proposed method was proved in respects of prediction precision and computing efficiency.
Keywords:transient stability prediction  electric power system  support vector machine  machine learning
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国电机工程学报》浏览原始摘要信息
点击此处可从《中国电机工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号