首页 | 本学科首页   官方微博 | 高级检索  
     


Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor
Authors:Peng-Cheng Gao An-Hui Lu  Wen-Cui Li
Affiliation:State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China
Abstract:Utilizing the dual functions of activated carbon (AC) both as a conductive agent and an active substance of a positive electrode, a hybrid supercapacitor (AC-MnO2&AC) with a composite of manganese dioxide (MnO2) and activated carbon as the positive electrode (MnO2&AC) and AC as the negative electrode is fabricated, which integrates approximate symmetric and asymmetric behaviors in the distinct parts of 2 V operating windows. MnO2 in the positive electrode and AC in the negative electrode together form a pure asymmetric structure, which extends the operating voltage to 2 V due to the compensatory effect of opposite over-potentials. In the range of 0-1.1 V, both AC in the positive and negative electrode assemble as a symmetric structure via a parallel connection which offers more capacitance and less internal resistance. The optimal mass proportions of electrodes are calculated though a mathematical process. In a stable operating window of 2 V, the capacitance of AC-MnO2&AC can reach 33.2 F g−1. After 2500 cycles, maximum energy density is 18.2 Wh kg−1 with a 4% loss compared to the initial cycle. The power density is 10.1 kW kg−1 with an 8% loss.
Keywords:Hybrid supercapacitor  Aqueous electrolyte  Positive electrode  Activated carbon  Manganese dioxide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号