首页 | 本学科首页   官方微博 | 高级检索  
     


Energy density approach for calculation of three-dimensional inelastic strain and stress at the crack tip in compact tension specimens of polycarbonate
Authors:S Dhar  G L Cloud
Affiliation:(1) Department of Metallurgy, Mechanics and Materials Science, Michigan State University, 48824 East Lansing, Michigan, USA
Abstract:An energy-based method is utilized for calculating elastic-plastic strains and stresses near fatigue crack tip in specimens of Merlon polycarbonate. The stress redistribution caused by the plastic yielding around the crack tip is taken into account so that theoretical crack tip strain is improved. The estimated values of crack tip strain based on an energy density approach are compared with experimental results obtained from an embedded grid moire technique and embedded strain gages. Large-scale yielding seems to dominate near the crack tip. In fact, the measured strain is in agreement with the elastic solution, which means, in reality, only small-scale yielding takes place near the crack tip. The strain in the mid-plane (plane strain) is found to be higher than in the surface plane (plane stress). The experimental and theoretical results are in good agreement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号