Composite beam composed of steel and precast concrete (Modularized Hybrid System,MHS). Part I: experimental investigation |
| |
Authors: | Won‐Kee Hong Seon‐Chee Park Jin‐Min Kim Seung‐Geun Lee Seung‐Il Kim Ki‐Joon Yoon Ho‐Chan Lee |
| |
Affiliation: | Department of Architectural Engineering, Kyung Hee University, Kyungki‐do, Korea |
| |
Abstract: | An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. Utilizing the merits of both steel and concrete material, the size of the steel beams can be reduced without sacrificing performance. The bottom flange of the steel beam is reinforced with concrete at a manufacturing plant, eliminating the use of temporary pour forms. The composite beams were tested to investigate how the size of the wide flange steel and how the top and bottom reinforcements influence the behaviour of the beams. Flexural load carrying capacity, load displacement relationships and failure modes were examined. The test specimens were T‐shaped composite beams with slabs, each measuring 10‐m long. The flexural moment strength of all of the composite beams—at both the yield limit state and the maximum load limit state—was measured and compared with the analytical flexural capacity. The stiffness degradation, ductility and dissipating energy capabilities of the composite beams were investigated based on the hysteresis curves. The composite beams tested in this study successfully reduced both the floor height of the building and the size of the steel beams needed to meet code requirements. Copyright © 2008 John Wiley & Sons, Ltd. |
| |
Keywords: | |
|
|