首页 | 本学科首页   官方微博 | 高级检索  
     


Nearly exact solution for coupled continuum/MD fluid simulation
Authors:Ju Li  Dongyi Liao and Sidney Yip
Affiliation:(1) Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, U.S.A
Abstract:A general statistical approach is described to couple the continuum with molecular dynamics in fluid simulation. Arbitrary thermodynamic field boundary conditions can be imposed on an MD system while minimally disturbing the particle dynamics of the system. And by acting away from the region of interest through a feedback control mechanism, across a buffer zone where the disturbed dynamics are allowed to relax, we can eliminate that disturbance entirely. The field estimator, based on maximum likelihood inference, serves as the detector of the control loop, which infers smooth instantaneous fields from the particle data. The optimal particle controller, defined by an implicit relation, can be proved mathematically to give the correct distribution with least disturbance to the dynamics. A control algorithm compares the estimated current fields with the desired fields at the boundary and modifies the action of the particle controller far way, until they eventually agree. This method, combined with a continuum code in a Schwarz iterative domain-decomposition formalism, provides a mutually consistent solution for steady-state problems, as particles in the MD region of interest have no way to tell any difference from reality. Finally, we explain the importance of using a higher order single-particle distribution function, in light of the Chapman–Enskog development for shear flow. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:Buffer  Continuum  Feedback  Inference  Least disturbance  Molecular dynamics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号