首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling computational limitations in H-Phy and Overlay-NoC architectures
Authors:Dawid Zydek  Grzegorz Chmaj  Steve Chiu
Affiliation:1. Department of Electrical Engineering, Idaho State University, Pocatello, USA
2. Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, USA
Abstract:High performance computing demands constant growth in computational power and services that can be offered by modern supercomputers. It requires technological and designing advances in the multiprocessor internal structures as well as novel computing models considering the very high computing demands. One of the increasingly important requirements of computing platforms is a functionality that allows efficient managing computational resources, i.e., monitor them, restrict an access to some part of the resources, account for computational service, or ensure reliability and quality of service when some resources are broken or disabled. In this paper, we present a new model describing computational limitations for processing tasks on multiprocessor systems. The model is implemented in Hardware-Physical (H-Phy) and Overlay-Network-on-Chip (Overlay-NoC) architectures. Both architectures and the model are described and analyzed. Experimentation system is also presented, together with simulation assumptions, results of research and their study. The paper provides complete models of H-Phy and Overlay-NoC structures with an ability to restrict processing resources.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号