首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的保类内核Fisher判别法及说话人辨别应用
引用本文:郑建炜,王万良. 一种新的保类内核Fisher判别法及说话人辨别应用[J]. 计算机科学, 2010, 37(7): 243-247
作者姓名:郑建炜  王万良
作者单位:浙江工业大学信息学院,杭州,310023
基金项目:国家自然科学基金项目 
摘    要:在保留数据本质特征的前提下,降低数据维度是一种重要的分类预处理手段.深入分析了核Fisher判别 (KFD)方法与核化全局局部保持Fisher投影(KLFDA)方法的相互关系与优缺点,提出了一种新的基于类内特性保持的核化Fisher判别分析方法(LW-KFD).在保留KFD全局最优投影能力的同时,解决了KLFDA的过度局部保持问题,从而对重叠(离群)样本与多态分簇样本都能实现有效的分类投影.提出了快速训练算法,解决了大量训练样本时的内存溢出问题.仿真实验与说话人辨别应用表明,该方法具有很强的适应性,并提高了说话人识别率与识别速度.

关 键 词:Fisher判别分析  局部保持投影  说话人辨别  核技巧  维度削减
收稿时间:2009-08-10
修稿时间:2009-11-01

Novel Local Within-class Features Preservation Kernel Fisher Discriminant Algorithm and Applied in Speaker Identification
ZHENG Jian-wei,WANG Wan-liang. Novel Local Within-class Features Preservation Kernel Fisher Discriminant Algorithm and Applied in Speaker Identification[J]. Computer Science, 2010, 37(7): 243-247
Authors:ZHENG Jian-wei  WANG Wan-liang
Affiliation:(School of Information,Zhejiang University of'Iechnology,Hangzhou 310023,China)
Abstract:Dimensionality reduction without losing intrinsic information on original data is an important technique for succeeding tasks such as classification. A novel local within-class features preservation kernel fisher discriminant algorithm was proposed after deeply analyzing the relationship between kernel fisher discriminant and kernel local fisher projection. I}he new method keeps the ability of KFD's global projection and solves the over-fitting of KI_FDA's local preservation problem, which can work well on overlapped or multimodal labeled data. I}he training algorithm is improved for resolving out of-memory problem when applied in large sample situation. The simulation and speaker identificanon application show that the proposed algorithm has more adaptability as well as advanced recognition rate and speed.
Keywords:Fisher discriminant analysis   Local preservation projection   Speaker identificaiton   Kernel trick   Dimensionality reduction
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号