首页 | 本学科首页   官方微博 | 高级检索  
     

非对称尾部形状水翼水力阻尼识别方法研究
引用本文:曾永顺,姚志峰,杨正军,王福军.非对称尾部形状水翼水力阻尼识别方法研究[J].水利学报,2019,50(7):864-873.
作者姓名:曾永顺  姚志峰  杨正军  王福军
作者单位:中国农业大学 水利与土木工程学院, 北京 100083,中国农业大学 水利与土木工程学院, 北京 100083;北京市供水管网系统安全与节能工程技术研究中心, 北京 100083,中交天津航道局有限公司, 天津 300461;天津市疏浚工程技术企业重点实验室, 天津 300461,中国农业大学 水利与土木工程学院, 北京 100083;北京市供水管网系统安全与节能工程技术研究中心, 北京 100083
基金项目:国家自然科学基金项目(51879266,51839001);国家重点研发计划(2017YFC0403206)
摘    要:水力阻尼是影响流激振动幅值预测精度的关键参数,是水力机械流激振动领域研究的热点问题。非对称尾部形状水翼在涡激振动和升力的联合作用下,振动响应的平衡位置具有时变特性,采用传统自由振动衰减法获得的水力阻尼比误差大幅度增加,甚至失效。为了克服传统自由振动衰减法应用局限,本文借助双向流固耦合数值模拟方法获得流激振动响应位移,通过带通滤波结合平衡位置校准,研究了动水环境中对称和非对称尾部形状水翼水力阻尼的识别方法。结果表明,数值模拟可较准确获取低阶结构模态和尾部旋涡脱落频率,相比实验结果,低阶弯曲模态频率、低阶扭曲模态频率和15 m/s流速下脱落涡频率最大偏差分别为7.58%、2.90%和1.42%;带通滤波可消除周期性涡激振动对响应信号的影响,水力阻尼比识别偏差度从7.51%下降到1.92%;平衡位置校准方法可采用多项式拟合法、线性插值法和光滑样条曲线法,所对应的水力阻尼比识别偏差度分别为34.93%、3.53%和0.16%。工程上,可优先推荐滤波结合线性插值法,在需要高精度水力阻尼比的场合,则必须采用滤波结合光滑样条曲线法。

关 键 词:非对称  尾部形状  水翼  水力阻尼比  识别方法
收稿时间:2018/11/23 0:00:00

Study on hydrodynamic damping identification for an asymmetrical trailing edge shape hydrofoil
ZENG Yongshun,YAO Zhifeng,YANG Zhengjun and WANG Fujun.Study on hydrodynamic damping identification for an asymmetrical trailing edge shape hydrofoil[J].Journal of Hydraulic Engineering,2019,50(7):864-873.
Authors:ZENG Yongshun  YAO Zhifeng  YANG Zhengjun and WANG Fujun
Affiliation:College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China,College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China,China Communications Tianjin Waterway Bureau Co., Ltd., Tianjin 300461, China;Tianjin Key Laboratory of Dredging Engineering Technology, Tianjin 300461, China and College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China;Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China
Abstract:Hydrodynamic damping is a critical parameter that affects the prediction accuracy of the vibration amplitude induced by flow, which is a hot issue in the field of the flow induced vibration of the hydraulic machinery. Due to the comprehensive effects of vortex-induced vibration and lift,the equilibrium position of the vibration of the asymmetric trailing edge shape hydrofoil has a time-variant characteristic. Therefore, the hydrodynamic damping ratio identified by traditional logarithmic decay method may have large deviation or even invalid. In order to overcome the limitation of the traditional free vibration method, the hydrodynamic damping identification methods of the hydrofoil with symmetrical and asymmetric trailing edge shapes in moving water were studied by combining bandpass filtering and equilibrium position calibration. The vibration induced by flow was obtained by a two-way fluid-structure numerical simulation, the first-order and second-order natural frequencies in water and the vortex shedding frequencies have good agreement with the experiments. The relative deviations are 7.58%, 2.90% and 1.42%, respectively. The vortex-induced vibration was eliminated by performing bandpass filtering, and the deviations of the identified hydrodynamic damping ratio decreased from 7.51% to 1.92%. The polynomial fitting method, the linear interpolation method and the smooth spline curve method were used in the calibration of the equilibrium position, and the deviations of identified hydrodynamic damping ratio were 34.93%, 3.53% and 0.16%, respectively. In order to reduce the time consumption of the vibration data processing, the methods of coupling filter and linear interpolation are recommended in engineering. However, the method coupled filter and smooth spline curve must be employed in the cases that the high-precision hydrodynamic damping ratio are required.
Keywords:asymmetric  trailing edge shape  hydrofoil  hydrodynamic damping ratio  identify method
本文献已被 CNKI 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号