首页 | 本学科首页   官方微博 | 高级检索  
     

铝镁贫氧推进剂中铝颗粒团聚特性
引用本文:李连波,陈雄,周长省,朱敏,赖华锦.铝镁贫氧推进剂中铝颗粒团聚特性[J].含能材料,2019,27(9):759-765.
作者姓名:李连波  陈雄  周长省  朱敏  赖华锦
作者单位:南京理工大学机械工程学院,江 苏 南京,210094;南京理工大学机械工程学院,江 苏 南京,210094;南京理工大学机械工程学院,江 苏 南京,210094;南京理工大学机械工程学院,江 苏 南京,210094;南京理工大学机械工程学院,江 苏 南京,210094
基金项目:国家自然科学基金 51606098;江苏省研究生科研与实践创新计划项目 KYCX18_0453国家自然科学基金(51606098);江苏省研究生科研与实践创新计划项目(KYCX18_0453)
摘    要:为了研究铝镁贫氧推进剂中铝颗粒燃烧的团聚行为和特性,采用扫描电子显微镜和光学可视化实验方法,对铝镁贫氧推进剂的燃烧过程、铝颗粒团聚产物的微观结构和粒径进行了研究,建立了铝团聚物尺寸预测模型并与实验数据进行了拟合。结果表明,在燃烧表面形成的铝液滴团聚物脱离燃烧表面后,会发生二次团聚。在1.0 MPa下,推进剂试件燃烧较充分,铝颗粒燃烧后为光滑的球状氧化铝颗粒,镁颗粒燃烧后为白色絮状;在0.2 MPa下,推进剂试件燃烧不充分,铝颗粒没有被完全氧化,表面较粗糙。随着燃烧室压强的升高,铝团聚物的体积平均粒径D(4,3)减小,而表面积平均粒径D(3,2)增大,粒径分布趋向单峰化,说明随着压强的增加,D(4,3)和D(3,2)的值越接近,铝团聚物的形状越规则,粒径分布越集中。团聚物粒径与燃烧速率成反比。

关 键 词:铝镁贫氧推进剂  微观结构  环境压强  粒径分布
收稿时间:2018/9/18 0:00:00
修稿时间:2019/3/18 0:00:00

Agglomeration Characteristics of Aluminum Particles in Aluminum-magnesium Oxygen-poor Propellant
LI Lian-bo,CHEN Xiong,ZHOU Chang-sheng,ZHU Min and LAI Hua-jin.Agglomeration Characteristics of Aluminum Particles in Aluminum-magnesium Oxygen-poor Propellant[J].Chinese Journal of Energetic Materials,2019,27(9):759-765.
Authors:LI Lian-bo  CHEN Xiong  ZHOU Chang-sheng  ZHU Min and LAI Hua-jin
Affiliation:School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China,School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:To study the agglomeration behaviors and agglomeration characteristics of aluminum particles in aluminum-magnesium (Al-Mg) oxygen-poor propellant, the combustion process of Al-Mg oxygen-poor propellants and the microstructure and particle size of agglomeration products of Al particles were investigated by using scanning electron microscopy and optical visualization experiment method. A model for predicting the aluminum agglomeration size was established and fitted to the experimental data. Results show that the secondary agglomeration occurs after the agglomerate of aluminum droplet formed on the combustion surface is separated from the combustion surface. At 1.0 MPa, the propellant specimens burns sufficiently, the aluminum particles after burning become smooth spherical alumina particles and the magnesium particles after burning become white flocculent magnesia. At 0.2 MPa, the propellant specimens burns insufficiently, the aluminum particles are not completely oxidized and the surface is rough. With the increase of combustion chamber pressure, the volume average particle size D(4,3) of aluminum agglomerate decreases, while the surface area average size D(3,2) increases, and particle size distribution tends to single peak, indicating that with the increase of pressure, the closer the values of D(4,3) and D(3,2) are, the more regular the shape of aluminum agglomerate is, and the more concentrated the agglomeration size distribution is. The agglomerate size is inversely proportional to the burning rate.
Keywords:aluminum-magnesium oxygen-poor propellants  microstructure  environmental pressure  particle size distribution
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《含能材料》浏览原始摘要信息
点击此处可从《含能材料》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号