首页 | 本学科首页   官方微博 | 高级检索  
     


Optimum RCS depressurization strategy for effective severe accident management of station black out accident
Authors:Changwook Huh  Namduk Suh  Goon-Cherl Park  
Affiliation:aKorea Institute of Nuclear Safety, 19-0 Guseong-dong, Yusong-gu, Daejon 305-338, Republic of Korea;bSeoul National University, San 56-1, Gwanak-Gu, Seoul 151-742, Republic of Korea
Abstract:Plant specific severe accident management guidelines (SAMG) for operating plants are developed and implemented in Korea as was required by government policy on severe accident. Korea Institute of Nuclear Safety (KINS) has recently reviewed feasibility of the developed SAMG for Ulchin unit 1 plant. Among the strategies referred in SAMG, we have intensively analyzed the reactor coolant system (RCS) depressurization strategy during station black out (SBO) accident scenario, which has a high probability of occurrence according to Ulchin unit 1 Probabilistic Safety Analysis (PSA). In depressurization strategy of the current SAMG, operators need to depressurize rapidly RCS pressure below 2.75 MPa using pressurizer (PZR) pilot operated safety relief valves (POSRVs) for high pressure accident like SBO. The rapid depressurization is effective in allowing the water of safety injection tank (SIT) to be injected into the core, but an excessive discharge of the SIT water is not desirable for an economical use of SIT inventory. Lack of SIT water accelerates the core damage in case the failed electric power do not recover in due to time. The SIT inventory economy means here that we should not waste the water inventory of SIT and use it in the most efficient way to cool the core. In case we do not use it in an economical way, the SIT might be depleted too rapidly, thus leaving an insufficient reservoir for post-depressurization cooling. The quantification of this SIT inventory economy for plant specific situation is of interest to develop an optimum depressurization strategy. In this study we have analyzed an effectiveness of current depressurization strategy for SBO accident with the severe accident analysis code MELCOR 1.8.5 which has been used for regulatory purpose in KINS. The entry time of severe accident management, a grace time gained by the current strategy, and the economy of the discharge mass flow rate for Ulchin plant were evaluated. Moreover, through a simple energy balance equation we could find an optimum strategy for RCS depressurization. The proposed strategy is based on finding an optimum discharge rate for an efficient use of the SIT inventory and it allows us to handle an SBO accident with higher confidence. The proposed strategy is yet a theoretical one, but possibilities of how to incorporate this strategy into engineered safety features are also discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号