首页 | 本学科首页   官方微博 | 高级检索  
     

面向货物装卸需求的越库仓门分配和货车排序
引用本文:李敬峰,叶艳,傅惠. 面向货物装卸需求的越库仓门分配和货车排序[J]. 工业工程, 2016, 19(2): 112
作者姓名:李敬峰  叶艳  傅惠
作者单位:广东工业大学 机电工程学院,广东 广州 510006
基金项目:国家自然科学基金资助项目(71302135,61104167)
摘    要:在货物种类多、批量少的越库调度系统中,货物的装卸顺序要求对于优化仓门分配和货车排序问题起着重要作用。针对这种情况,以最小化越库操作完工时间为目标,建立越库调度模型。分别基于优化仓门分配和货车排序问题,设计惯性权重非线性改变和增加交叉操作的改进粒子群算法进行迭代寻优。最后通过不同规模的数值实验,将改进粒子群算法与标准粒子群算法和遗传算法进行对比分析,实验结果表明改进粒子群算法在求解精度上比标准粒子群算法和遗传算法有明显优势,在求解时间上优于遗传算法,略逊色于标准粒子群算法。

关 键 词:越库   装卸要求   货车排序   仓门分配   粒子群算法  

A Research on Dock Assignment and Truck Sequence in a Cross-docking System Considering the Unloading/Loading Sequences of Cargos
LI Jingfeng,YE Yan,FU Hui. A Research on Dock Assignment and Truck Sequence in a Cross-docking System Considering the Unloading/Loading Sequences of Cargos[J]. Industrial Engineering Journal, 2016, 19(2): 112
Authors:LI Jingfeng  YE Yan  FU Hui
Affiliation:School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract:In a cross-docking system with a wide variety and small batches of cargos, the practical requirement of cargos′ unloading/loading sequences plays an important role in the optimization of dock assignment and truck sequence. Under this situation, a new scheduling model to minimize the makespan of cross-docking operations is proposed, and an improved particle swarm algorithm for the proposed model is designed to optimize the dock assignment and the truck sequence. Many numerical experiments are conducted on instances with different scales by using genetic algorithm, standard particle swarm algorithm and improved particle swarm algorithm. Computational results of the three algorithms are compared and it is shown that the proposed algorithm performs better in solution accuracy than standard particle swarm algorithm and genetic algorithm. Its computing time is shorter than that of genetic algorithm and slightly longer than that of standard particle swarm algorithm.
Keywords:cross docking  unloading/loading requirement  truck sequence  dock assignment  particle swarm algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《工业工程》浏览原始摘要信息
点击此处可从《工业工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号