首页 | 本学科首页   官方微博 | 高级检索  
     


Linear and nonlinear viscoelastic and viscoplastic analysis of asphalt binders with warm mix asphalt additives
Authors:Mohammed Sadeq  Eyad Masad  Hussain Al-Khalid  Okan Sirin  Loujaine Mehrez
Affiliation:1. School of Engineering, Centre for Engineering Sustainability, University of Liverpool , Liverpool, UK;2. Mechanical Engineering Program, Texas A&3. M University at Qatar , Doha, Qatar;4. Mechanical Engineering Program, Texas A&5. School of Engineering, Centre for Engineering Sustainability, University of Liverpool , Liverpool, UK;6. Department of Civil &7. Architectural Engineering, College of Engineering, Qatar University , Doha, Qatar;8. Viterbi School of Engineering, University of Southern California , Los Angeles, CA, USA
Abstract:Warm-Mix Asphalt (WMA) is a widely used product, which proved a contribution to the reduction in asphalt mixing and compaction temperatures. This reduction leads to lower fuel consumption and smoke emission in asphalt plants. Most of the characterisation of binders used in WMA has focused in the past on measuring linear viscoelastic properties and associated Superpave parameters. Several studies have shown that the average stresses and strains of the asphalt mixture remain mostly within the linear viscoelastic response. However, localised strains in the binder phase of the mixture could reach values high enough to induce nonlinear viscoelastic and viscoplastic deformations. Therefore, this study focuses on an experimental and analytical evaluation of linear, nonlinear viscoelastic and viscoplastic responses of selected binders modified for use in WMA. The first part of the paper analyses the linear viscoelastic material properties and their ability to evaluate permanent deformation resistance. Then, the non-recoverable creep compliance parameter obtained from the Multiple Stress Creep Recovery (MSCR) test is analysed to assess the nonlinear response and permanent deformation of asphalt binders. The paper utilises a nonlinear plasto-viscoelastic (NPVE) approach to assess and quantify the nonlinear plasto-viscoelastic response of binders by separating the recoverable and irrecoverable strains measured in the MSCR test. Two WMA additives were included in this study by mixing them with polymer-modified and unmodified asphalt binders. Analysis of results showed that the NPVE approach captured a higher percentage of recovery than the NLVE approach. However, binder’s performance evaluation and ranking did not change by adopting the NPVE approach. The nonlinear viscoelastic parameters provided insight on the behaviour of asphalt binders mixed with WMA additives during loading cycles. Sasobit showed higher influence than Advera on binders in resisting permanent deformation by increasing the recoverable strain during the unloading phase.
Keywords:WMA  Sasobit  Advera  DSR  plasto-viscoelastic  MSCR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号