首页 | 本学科首页   官方微博 | 高级检索  
     

保留复杂化学模式特征的映射及其应用
引用本文:颜学峰,余娟,钱锋,丁军委,陈德钊,胡上序. 保留复杂化学模式特征的映射及其应用[J]. 计算机与应用化学, 2005, 22(11): 1013-1017
作者姓名:颜学峰  余娟  钱锋  丁军委  陈德钊  胡上序
作者单位:华东理工大学自动化研究所,上海,200237;浙江大学化工系计算机仿真教研室,浙江,杭州,310027
基金项目:国家自然科学基金(20506003);上海启明星项目(04QMX1433);国家973计划(2002CB312200);国家863计划(2002AA412110).
摘    要:提出一种保留模式特征的映射算法,并具体应用于高维的、分量间存在复共线性的复杂化学模式特征的映射,取得良好效果。算法首先提取能最大限度表达复杂化学模式特征的特征变量,并进而采用自组织映射算法将由特征变量组成的特征模式映射到低维空间,使自组织映射结果平面能直观地显示复杂化学模式的特征。算法在具体应用过程中根据复杂化学模式样本的特性,提出了主成分特征映射和分类相关成分特征映射算法。

关 键 词:复杂化学模式  特征映射  主成分  分类相关成分  自组织映射
文章编号:1001-4160(2005)11-1013-1017
收稿时间:2005-01-28
修稿时间:2005-01-282005-08-11

The feature-preserving map of complex chemical patterns and its application
YAN XueFeng,YU Juan,QIAN Feng,DING JunWei,CHEN DeZhao,HU ShangXu. The feature-preserving map of complex chemical patterns and its application[J]. Computers and Applied Chemistry, 2005, 22(11): 1013-1017
Authors:YAN XueFeng  YU Juan  QIAN Feng  DING JunWei  CHEN DeZhao  HU ShangXu
Affiliation:1. Automation Institute, East China University of Science and Technology, Shanghai, 200237, PR, China; 2. Department of Chemical Engineering, Zhejiang University, Hangzhou, 310027, PR, China
Abstract:A novel map approach, named as pattern feature-preserving map, was proposed to obtain the two-dimensional feature-preserving map of the high-dimensional patterns and to avoid from the troubles that some independent variables have only a little or not effect on the pattern feature and that there exists significant correlation among some independent variables. The two-dimensional feature-preserving map can more concisely and efficiently represent the pattern feature. Firstly, the feature variables, which are derived from the original independent variables, have no correlation with each other, and can represent the pattern feature at the utmost. Then, the feature variables are employed as the input variables for the self-organizing map networks. In the practical applications, principal component analysis and correlative component analysis were employed to identify the feature variables for the feature-preserving map of the complex patterns.
Keywords:complex chemical pattern   feature-preserving map   principal component analysis   correlative components analysis   selforganizing map
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号