首页 | 本学科首页   官方微博 | 高级检索  
     

面向污水处理的动态变分贝叶斯混合因子故障诊断
引用本文:肖红军,刘乙奇,黄道平. 面向污水处理的动态变分贝叶斯混合因子故障诊断[J]. 控制理论与应用, 2016, 33(11): 1519-1526
作者姓名:肖红军  刘乙奇  黄道平
作者单位:佛山科学技术学院自动化学院,华南理工大学自动化科学与工程学院,华南理工大学自动化科学与工程学院
基金项目:国家自然科学基金项目(61403142), 佛山市科技创新专项资金项目(2014AG10018)资助.
摘    要:在污水生化处理过程中,存在着多变量耦合、强非线性、参数时变、大滞后等特点,面对这些特点,传感器故障频发,从而导致生化过程无法得到有效优化和诊断.为此,本文在结合动态数据特性的基础上提出了一种基于变分贝叶斯混合因子的动态故障诊断方法,同时,利用混合因子的在线调整实现了诊断模型的半自适应化.该方法能够捕捉到污水处理过程的强非线性和动态性,从而可有效降低故障诊断的误报率和漏报率.通过在国际水协会的BSM1模型上的模拟研究,充分表明所提出的策略可以显著提高故障诊断能力,精确地检测传感器的突变和漂移故障,甚至定位故障所发生的根本原因.

关 键 词:故障诊断   污水处理   变分贝叶斯学习   混合因子   半自适应
收稿时间:2015-07-16
修稿时间:2016-07-08

Dynamic fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment
XIAO Hong-jun,LIU Yi-qi and HUANG Dao-ping. Dynamic fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment[J]. Control Theory & Applications, 2016, 33(11): 1519-1526
Authors:XIAO Hong-jun  LIU Yi-qi  HUANG Dao-ping
Affiliation:College of Automation, Foshan University,School of Automation Science and Engineering, South China University of Technology,School of Automation Science and Engineering, South China University of Technology
Abstract:Exposure to variables coupled, significant nonlinearities, parameters shift and time delay in the wastewatertreatment processes often result in sensors unavailable and even the entire plant not to be optimized and diagnosedefficiently. Therefore, this work presents the design of a dynamic fault diagnosis method on the basis of the variationalBayesian mixture factor analysis (VBMFA) together with the dynamic data. Also, the mixture factors can be identified ina semi-adaptive way. The purpose of proposed methodologies is to capture strong nonlinearity and the significant dynamicfeature of WWTPs, which seriously limit the application of conventional multivariate statistical methods for fault diagnosisimplementation. The performance of our proposed method is validated through a simulation study at BSM1. Results havedemonstrated that the proposed strategy can significantly improve the ability of fault diagnosis under fault-free scenario,accurately detect the abrupt change and drift fault, and even localize the root cause of corresponding fault properly.
Keywords:fault diagnosis   wastewater treatment   variational Bayesian learning   mixture factor analysis   semi-adaptive
本文献已被 CNKI 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号