首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF
Affiliation:1. Warsaw University of Technology, Faculty of Physics, 00-662, Warsaw, Poland;2. Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France;3. Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000, Lille, France;4. Institut Universitaire de France, 1 rue Descartes, F-75231, Paris Cedex 05, France;1. CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China;2. Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan;1. Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden, Germany;2. Dresden University of Technology, Institute of Materials Science, 01062 Dresden, Germany;1. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Microstructure and Properties of Materials (IEK-2), 52425, Jülich, Germany;2. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), 52425, Jülich, Germany;3. Forschungszentrum Jülich GmbH, Ionics in Energy Storage (IEK-12), 48149, Münster, Germany;4. RWTH Aachen, Institute of Physical Chemistry, 52074, Aachen, Germany;1. Solid State Ionics & Glass Research Laboratory, Physics Department, The M. S. University of Baroda, Vadodara, 390002, Gujarat, India;2. ITM (SLS) Baroda University, Vadodara, 391510, Gujarat, India
Abstract:The work presents the investigations of Li1.3Al0.3Ti1.7(PO4)3-xLiF Li-ion conducting ceramics with 0 ≤ x ≤ 0.3 by means of X-ray diffractometry (XRD), 7Li, 19F, 27Al and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy, thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density method. It has been shown that the total ionic conductivity of both as-prepared and ceramic Li1.3Al0.3Ti1.7(PO4)3 is low due to a grain boundary phase exhibiting high electrical resistance. This phase consists mainly of berlinite crystalline phase as well as some amorphous phase containing Al3+ ions. The electrically resistant phases of the grain boundary decompose during sintering with LiF additive. The processes leading to microstructure changes and their effect on the ionic properties of the materials are discussed in the frame of the brick layer model (BLM). The highest total ionic conductivity at room temperature was measured for LATP-0.1LiF ceramic sintered at 800 °C and was equal to σtot = 1.1 × 10−4 S cm−1.
Keywords:Solid electrolyte  Li-ion conductor  Composite  Ceramic  NASICON
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号