首页 | 本学科首页   官方微博 | 高级检索  
     


Avalanche multiplication properties of GaAs calculated from spatially transient ionisation coefficients
Authors:S P Wilson  S Brand  R A Abram
Affiliation:

Department of Physics, University of Durham, South Road, Durham DH1 3LE, U.K.

Abstract:In this paper the high field phenomenon of avalanche multiplication in a GaAs p-i-n infrared detector is studied using a Monte-Carlo simulation. The Lucky-Drift model of impact ionization is used to give the characteristic lengths for transport through the device. The transport is then modelled by generating motion consistent with the probability functions derived from the mean free paths. This produces a spatially transient ionization coefficient for each carrier and allows the realistic statistical simulation of avalanche multiplication. Properties such as mean gain, multiplication noise and the transient response to a photonic pulse have been calculated and explained for a length of i-GaAs, with an emphasis on short active region phenomena. The effect on the ionization coefficients of a periodic field change has been investigated. It has been found that the effective carrier deadspace is approx. 1.35 times the absolute deadspace. The transient current calculations indicate the narrow bandwidth of this type of device. The presence of a periodic field change, caused by periodic δ-doping, was found to increase both electron and hole ionization coefficients by different proportions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号