首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization under adaptive error control for finite element based simulations
Authors:Bart G van Bloemen Waanders  Brian R Carnes
Affiliation:1.Sandia National Laboratories,Albuquerque,USA
Abstract:Optimization problems constrained by complex dynamics can lead to computationally challenging problems especially when high accuracy and efficiency are required. We present an approach to adaptively control numerical errors in optimization problems approximated using the finite element method. The discrete adjoint equation serves as a key tool to efficiently compute both parameter sensitivities and goal-oriented error estimates at the same discretized levels. By using a recovery method for the error estimators, we avoid expensive higher order adjoint calculations. We nest the adaptivity of the mesh within the optimization algorithm, which is responsible for converging both the state and optimization algorithms and thereby allowing the reuse of state, parameters, and reduced Hessian in subsequent optimization iterations. Our approach is demonstrated on a parameter estimation problem for contamination transport in a contact tank reactor. Significant efficiency and accuracy improvements are realized in comparison to uniform grid refinement strategies and black-box optimization methods. A flexible and maintainable software interface was developed to provide access between the underlying linear algebra of a production simulator and advanced numerical algorithms such as optimization and error estimation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号