首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test
Authors:Maoqiu Wang  Eiji Akiyama
Affiliation:a National Engineering Research Center of Advanced Steel Technology, Central Iron and Steel Research Institute, No. 76 XueYuanNanLu, Beijing 100081, China
b Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Abstract:The effect of hydrogen on the fracture behavior of the quenched and tempered AISI 4135 steel at 1450 MPa has been investigated by means of slow strain rate tests on smooth and circumferentially-notched round-bar specimens. Hydrogen was introduced into specimens by electrochemical charging and its content was measured by thermal desorption spectrometry (TDS) analysis. Results showed that the steel had high hydrogen embrittlement susceptibility. For both smooth and notched specimens, the fracture mode was changed from microvoid coalescence (MVC) to brittle intergranular (IG) fracture after the introduction of a small amount of diffusible hydrogen. Fracture initiated in the vicinity of the notch root for notched specimens, while it started from around the center in smooth specimens. The fracture stress decreased with increasing diffusible hydrogen content, and the decreasing trend was more prominent for specimens with a higher stress concentration factor. Taking into account the stress-driven hydrogen diffusion and accumulation in the vicinity of the notch root, the local diffusible hydrogen concentration and local fracture stress in notched specimens have been calculated. According to numerical results, the relationship between the local fracture stress and local diffusible hydrogen concentration was independent of stress concentration factor, which could account for the effect of hydrogen on the fracture stress of the steel.
Keywords:A  Martensitic steels  C  Hydrogen embrittlement  C  Fracture stress  B  Slow strain rate test  B  Thermal desorption spectrometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号