首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度残差网络的语音隐写分析方法
引用本文:任奕茗,王让定,严迪群,林昱臻. 基于深度残差网络的语音隐写分析方法[J]. 计算机应用, 2021, 41(3): 774-779. DOI: 10.11772/j.issn.1001-9081.2020060763
作者姓名:任奕茗  王让定  严迪群  林昱臻
作者单位:宁波大学 信息科学与工程学院, 浙江 宁波 315211
基金项目:浙江省自然科学基金资助项目;浙江省移动网应用技术重点实验室开放基金资助项目;国家自然科学基金资助项目
摘    要:针对目前以WAV格式语音为载体的最低有效位(LSB)隐写方法的检测性能较低的问题,提出了一种基于深度残差网络的语音隐写分析方法.首先,通过多组高通滤波器组成的固定卷积层来计算输入语音信号的残差信号,并利用截断线性激活单元对得到的残差信号进行截断操作;然后,通过卷积层与设计的残差块的堆叠来构建深度网络,以提取深层次的隐写...

关 键 词:音频  语音  最低有效位  隐写分析  深度残差网络  深度学习
收稿时间:2020-06-08
修稿时间:2020-10-14

Speech steganalysis method based on deep residual network
REN Yiming,WANG Rangding,YAN Diqun,LIN Yuzhen. Speech steganalysis method based on deep residual network[J]. Journal of Computer Applications, 2021, 41(3): 774-779. DOI: 10.11772/j.issn.1001-9081.2020060763
Authors:REN Yiming  WANG Rangding  YAN Diqun  LIN Yuzhen
Affiliation:Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo Zhejiang 315211, China
Abstract:Concerning the low detection performance of the Least Significant Bit (LSB) steganography method on WAV-format speech, a speech steganalysis method based on deep residual network was proposed. First, the residual signal of the input speech signal was calculated through a fixed convolutional layer composed of multiple sets of high-pass filters, and a truncated linear unit was adopted to perform truncation to the obtained residual signal. Then, a deep network was constructed by stacking the convolutional layer and the designed residual block to extract the deep feature information of steganography. Finally, the final classification result was output by the classifier composed of the fully connected layer and Softmax layer. Experimental results under the different secret information embedding rates of two steganography methods,Hide4PGP (Hide 4 Pretty Good Privacy) and LSBmatching (Least Significant Bit matching), show that compared with the exising Convolutional Neural Network (CNN)-based steganalysis methods, the proposed method can achieve better performance, and compared with LinNet, the proposed method has the detection accuracy increased by 7 percentage points on detecting Hide4PGP with the embedding rate of 0.1 bps (bit per sample).
Keywords:audio  speech  Least Significant Bit (LSB)  steganalysis  deep residual network  deep learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号