首页 | 本学科首页   官方微博 | 高级检索  
     

基于共享评级迁移的跨域推荐算法
引用本文:陈燕,马进元,李桃迎. 基于共享评级迁移的跨域推荐算法[J]. 计算机应用研究, 2021, 38(9): 2662-2666,2672. DOI: 10.19734/j.issn.1001-3695.2020.11.0410
作者姓名:陈燕  马进元  李桃迎
作者单位:大连海事大学 航运经济与管理学院,辽宁 大连210211
基金项目:国家自然科学基金项目(51939001,61976033);辽宁省兴辽英才计划青年拔尖人才项目(XLYC1907084);辽宁省自然科学基金项目(20180550307);中央高校基本科研业务费项目(3132019353,3132020233)
摘    要:数据稀疏和用户冷启动一直是推荐系统中亟待解决的问题,因此提出了一种基于共享评级迁移的跨域推荐算法(shared ratings transfer cross-domain recommendation,SRTCD).首先,该算法考虑到不同领域间存在着用户群体/项目信息潜在特征的相似性,对各个领域评分矩阵进行概率矩阵分解,得到用户和项目的潜在特征;再利用基于模拟退火和遗传算法优化的K-means算法对用户和项目分别进行聚类,将用户类别和项目类别的内积作为共享评级;然后利用各领域数据集的共享评级和目标领域数据集的特定评级得出推荐结果.最后,利用公共数据集对所提方法SRTCD进行验证,结果表明该方法的推荐性能明显优于常用推荐算法.

关 键 词:跨域推荐  模拟退火  遗传算法  K-means  共享评级
收稿时间:2020-11-17
修稿时间:2021-08-11

Cross domain recommendation algorithm based on shared ratings transfer
Chen Yan,Ma Jinyuan and Li Taoying. Cross domain recommendation algorithm based on shared ratings transfer[J]. Application Research of Computers, 2021, 38(9): 2662-2666,2672. DOI: 10.19734/j.issn.1001-3695.2020.11.0410
Authors:Chen Yan  Ma Jinyuan  Li Taoying
Affiliation:School of Maritime Economics and Management,Dalian Maritime University,,
Abstract:Data sparsity and user cold start are always the problems to be solved in the recommendation system. This paper proposed a cross domain recommendation algorithm SRTCD. Considering the similarity of latent factors of user groups / items in different domains, the algorithm decomposed the rating matrix of each domain into probability matrix to obtain the latent factors of users and items. Then, it used K-means algorithm based on simulated annealing and genetic algorithm to cluster users and items respectively, and used the inner product of user category and items category as shared rating. Then, it obtained the recommendation results by using the shared rating of each domain dataset and the specific rating of the target domain dataset. Finally, it verified the proposed method by public data sets, and the results show that the performance of SRTCD is significantly better than that of common recommendation algorithms.
Keywords:cross domain recommendation   simulated annealing   genetic algorithm   K-means   shared ratings
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号