首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的知识图谱补全方法研究
引用本文:王维美,陈恒,史一民,李冠宇. 基于卷积神经网络的知识图谱补全方法研究[J]. 计算机应用与软件, 2021, 38(4): 250-255. DOI: 10.3969/j.issn.1000-386x.2021.04.041
作者姓名:王维美  陈恒  史一民  李冠宇
作者单位:大连海事大学信息科学技术学院 辽宁 大连 116026;大连海事大学信息科学技术学院 辽宁 大连 116026;大连外国语大学软件学院 辽宁 大连 116044
基金项目:辽宁省自然科学基金项目;大连外国语大学科研创新团队项目;国家社会科学基金项目;国家自然科学基金项目
摘    要:知识图谱是事实三元组的集合,其表示形式为(头实体,关系,尾实体).为了补全知识图谱中缺失的实体和关系,提出一种基于卷积神经网络的知识图谱补全方法.使用传统嵌入模型训练三元组,得到实体向量和关系向量;将三元组表示成3列矩阵,作为卷积神经网络的输入,卷积后得到三元组的特征表示图;连接所有特征图和权重向量进行点乘得到每个三元...

关 键 词:知识图谱  知识图谱补全  卷积神经网络  链接预测  三元组分类

KNOWLEDGE GRAPH COMPLETION METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK
Wang Weimei,Chen Heng,Shi Yimin,Li Guanyu. KNOWLEDGE GRAPH COMPLETION METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Computer Applications and Software, 2021, 38(4): 250-255. DOI: 10.3969/j.issn.1000-386x.2021.04.041
Authors:Wang Weimei  Chen Heng  Shi Yimin  Li Guanyu
Affiliation:(Faculty of Information Science&Technology,Dalian Maritime University,Dalian 116026,Liaoning,China;School of Software,Dalian University of Foreign Languages,Dalian 116044,Liaoning,China)
Abstract:Knowledge graph is a collection of factual triples,the representation is(head,relation,tail).In order to complete the missing entities and relations in the knowledge graph,an improved convolutional neural network knowledge graph completion method is proposed.The traditional embedding model was used to train the triples to obtain the entity vector and the relation vector;the triple was represented as a 3-column matrix as the input to the convolutional neural network,and the matrix was convolved with convolution kernel to obtain feature maps;all feature maps were connected,and the weight vector was multiplied to obtain the score of each triple to determine the correctness of a triple.In the experiment,the data sets WN18RR,FB15K-237,FB15K were used to link prediction and triple classification experiments.The experimental results show that compared with other methods,the proposed method achieves better experimental results on the Mean Rank and Hit@10 indicators,which proves that the method can effectively improve the prediction accuracy of the triples.
Keywords:Knowledge graph  Knowledge graph completion  Convolutional neural network  Link prediction  Triple classification
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号