首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的临床心电图分类算法
引用本文:刘守华,王小松,刘昱. 基于深度学习的临床心电图分类算法[J]. 计算机与现代化, 2021, 0(8): 52-57. DOI: 10.3969/j.issn.1006-2475.2021.08.010
作者姓名:刘守华  王小松  刘昱
作者单位:中国科学院大学,北京 100049;中国科学院微电子研究所,北京 100029;新一代通信射频芯片技术北京市重点实验室,北京 100029
基金项目:天津市院市合作专项(18YFYSZC00130)
摘    要:心电图反映了人体心脏健康状况,是临床诊断心血管类疾病的重要依据.随着心电图数量的快速增长,计算机辅助心电图分析的需求愈加迫切,心电图自动分类作为实现计算机辅助心电图分析不可或缺的技术手段,具有重要的医学价值.由于心电信号非常微弱、抗干扰性差,传统心电图分类算法存在测试集上效果好,实际临床应用效果欠佳的问题.为此,本文研...

关 键 词:深度学习  残差网络  卷积神经网络  心电图  数据分布  损失函数
收稿时间:2021-08-19

Clinical Electrocardiogram Classification Algorithm Based on Deep Learning
LIU Shou-hua,WANG Xiao-song,LIU Yu. Clinical Electrocardiogram Classification Algorithm Based on Deep Learning[J]. Computer and Modernization, 2021, 0(8): 52-57. DOI: 10.3969/j.issn.1006-2475.2021.08.010
Authors:LIU Shou-hua  WANG Xiao-song  LIU Yu
Abstract:Electrocardiogram (ECG) which can reflect the health state of human heart is widely used in clinical examination on heart diseases as an important basis. With the increasing number of ECG data, the demand of  the computer-assisted electrocardiogram analysis has become urgent. Electrocardiogram automatic classification as an indispensable technical means of computer aided electrocardiogram analysis has important medical value. However, because of the weakness and low anti-interference of ECG signal, the traditional ECG classification algorithms have the problems of good effect on test set and poor effect in clinical application. So, this paper introduces a ResNet network structure of one-dimensional convolution based on multi-lead two-dimensional structure, increases the diversity of training samples by means of data enhancement such as translation starting point and adding noise, and uses Focal Loss function to optimize the ECG classification model of individual patients. The model uses 20000 complete 8-lead ECG data and a total of 34 types of abnormal ECG events for classification experiments. The results obtained are: F1 score 0.91, accuracy 93.96%, recall rate 87.89%. Experiment results show the proposed algorithm has better ability of deep feature mining and classification, which verifies its effectiveness in arrhythmia classification.
Keywords:deep learning  residual network  convolutional neural network(CNN)  ECG  data distribution  loss function  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号